Numerical Methods and Complex Variables

Index

1. Numerical Methods

- 1.1 Definition of Interpolation
- 1.2 Finding Root by Iterative Method
- 1.3 Solving First Order ODE by Picard's Method
- 1.4 Taylor Series Method for Solving Second Order ODE
- 1.5 Runge-Kutta Method for Solving Second Order ODE
- 1.6 Numerical Differentiation

2. Laplace Transforms

- 2.1 Definition of Laplace Transform
- 2.2 Laplace Transforms of Standard Functions
- 2.3 First Shifting Property of Laplace Transform
- 2.4 Second Shifting Theorem (Second Transformation Theorem)
- 2.5 Laplace Transform of Functions when they are Multiplied or Divided by "t"
- 2.6 Laplace Transform of Derivatives
- 2.7 Laplace Transform of an Integral
- 2.8 Laplace Transform of Periodic Functions
- 2.9 Laplace Transform of Special Functions
- 2.10 Inverse Laplace Transforms
- 2.11 First Shifting Theorem
- 2.12 Second Shifting Theorem
- 2.13 Inverse Laplace Transform of Derivatives
- 2.14 Inverse Laplace Transform of Integrals
- 2.15 Inverse Laplace Transform of Functions when they are Multiplied or Divided by "s"
- 2.16 Convolution Theorem
- 2.17 Application of Laplace Transform to Ordinary Differential Equations

3. Analytic Functions

- 3.1 Complex Functions and Its Representation on Argand Plane
- 3.2 Concepts of Limit, Continuity, Differentiability, Analyticity, Cauchy-Riemann Conditions and Harmonic Function
- 3.3 Milne-Thomson Method
- 3.4 Line Integral Evaluation along a Path and by Indefinite Integration
- 3.5 Cauchy's Integral Theorem (Singly and Multiply Connected Regions)
- 3.6 Cauchy's Integral Formula

4. Singularities and Residues

- 4.1 Radius of Convergence
- 4.2 Taylor's Theorem
- 4.3 Laurent Series Expansion
- 4.4 Singular Point, Isolated Singularity and Pole Order of m
- 4.5 Essential Singularity
- 4.6 Residue Evaluation of Residue by Formula and by Laurent Series
- 4.7 Evaluation of Real Definite Integrals Using Contour Integration

5. Conformal Mappings

- 5.1 Conformal Mappings
- 5.2 Standard Transformations in Complex Mapping
- 5.3 Bilinear (Möbius) Transformation and Its Properties